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Abstract
For a wide class of Hamiltonians, a novel method for obtaining lower and upper
bounds for the lowest energy is presented. Unlike perturbative or variational
techniques, this method does not involve the computation of any integral
(a normalization factor or a matrix element). It just requires the determination
of the absolute minimum and maximum in the whole configuration space of the
local energy associated with a normalizable trial function (the calculation of
the norm is not needed). After a general introduction, the method is applied to
three non-integrable systems: the asymmetric annular billiard, the many-body
spinless Coulombian problem, the hydrogen atom in a constant and uniform
magnetic field. Being more sensitive than the variational methods to any local
perturbation of the trial function, this method can be used to systematically
improve the energy bounds with a local skilled analysis; an algorithm relying
on this method can therefore be constructed and an explicit example for a
one-dimensional problem is given.

PACS numbers: 03.65.Db, 05.45.Mt, 02.30.Tb

1. Introduction

In a large variety of interesting physical problems, finding the discrete spectrum of an
operator can be done with approximate methods only. Moreover, in most cases, it is a
rather difficult task to estimate errors. Perturbative techniques often lead to non-convergent
series and an evaluation of the discrepancies with the exact result is usually beyond their
scope. For semibounded operators (bounded from below, say), variational methods naturally
provide upper bounds for the lowest eigenvalue and require much more work for providing
a lower bound with Temple-like methods (Reed and Simon 1978, XIII.2). Another source
of difficulties when dealing with perturbative and/or variational techniques, is that they both
involve the calculation of integrals on the configuration spaceQ: the norm of the wavefunctions
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and some matrix elements of operators. This reflects the fact that the discrete spectrum
of a differential operator encapsulates some global information on Q within the boundary
conditions imposed on the normalizable wavefunctions. In this paper, I want to propose an
approximate method that will overcome these two obstacles: it can rigorously provide both
lower and upper bounds without any kind of integration. Like the variational techniques, it
will involve a (set of) trial normalizable function(s) with the appropriate boundary conditions
and will concern in practice the lowest eigenvalue only. The bounds are given by the absolute
extrema of a function defined on Q (the so-called local energy). In a sense, this method allows
us to stay as local as possible in the configuration space Q: in order to improve the bounds,
a local analysis near the extrema (or near the possible singular points) of the local energy is
sufficient and necessary. This paper is organized as follows. In section 2, I give the proof of the
inequalities that will be the starting point of the differential method. A comparison with what
already exists in the literature follows and the guidelines of the method are presented. Sections
3, 4 and 5 show how the method can be applied to three non-integrable quantum systems.
Before the concluding remarks, in section 6, I explicitly show on the quartic oscillator how
the sensitivity of the differential method to local perturbations of the trial functions can be
exploited to systematically improve the bounds of the ground state energy with an elementary
algorithm.

2. Bounding the ground state energy with the local energy

Let us start with a quantum system whose Hamiltonian Ĥ acts on the Hilbert space of functions
defined on a configuration space Q. Let us suppose that Ĥ has an eigenstate |�0〉 associated
with an element E0 of the discrete spectrum. For any state |ϕ〉, the Hermiticity of Ĥ implies the
identity 〈�0|(Ĥ−E0)|ϕ〉 = 0. If we choose |ϕ〉 such that its configuration space representation
ϕ(q) is a smooth real normalizable wavefunction, we obtain∫

Q
�∗

0(q)(H − E0)ϕ(q) dq = 0. (1)

The crucial positivity hypothesis is to assume that we can choose one eigenstate such that its
eigenfunction �0 remains real and positive or zero in the whole Q. This generally applies to
the ground state for which it has been shown in many cases that it is strictly positive in the
interior of Q (Reed and Simon 1978, XIII.12). Then, the real part of (1) involves an integrand
that is a smooth, real function constructed from the real part HR of the differential operator H.
Then there exists a q in Q such that �0(q)(HR − E0)ϕ(q) changes its sign. Therefore,

∃q ∈ Q such that (HR − E0)ϕ(q) = 0. (2)

Let us now introduce a function on Q that is known as the local energy1

E
[ϕ]
loc (q)

def= HRϕ(q)

ϕ(q)
. (3)

From condition (2), we immediately obtain that for all smooth real and normalizable states ϕ,

inf
Q

(
E

[ϕ]
loc (q)

)
� E0 � sup

Q

(
E

[ϕ]
loc (q)

)
. (4)

Surprisingly, these two inequalities are sparsely known in the literature (Barnsley 1978,
Baumgartner 1979, Thirring 1979, Crandall and Reno 1982, Schmutz 1985) and always under
some more restricted conditions (the upper bound is often missing).

1 The usual motivation for introducing the local energy is just to roughly estimate the dispersion in energy obtained
for an approximated eigenfunction. For instance, when using Monte Carlo methods for computing expectation values.
The derivation of inequality (4) shows that for the ground state this qualitative approach can be made rigorous.
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The original proof presented here links the inequalities to the non-negativity of the ground
state without referring to the detailed structure of the Hamiltonian. In particular, it does not
require the Hamiltonian to have the purely quadratic form

Ĥ =
∑
i,j

ai,j p̂i p̂j + V (q̂) (5)

where a is a definite positive real matrix and V a well-behaved potential. Inequalities (4) still
apply (with the appropriate definition (3) of the local energy) in the presence of a singular
potential, when there is a magnetic field and for an infinite number of freedoms (as in the
non-relativistic quantum field describing a BEC condensate). Besides, it is not required for ϕ

to be nonvanishing. It simply says that where ϕ vanishes faster than HRϕ, one or both of the
bounds can be infinite and therefore useless.

The first form of inequalities (4) (with its two bounds) is due to Barta (1937) and was
derived for the fundamental vibration mode of an elastic membrane. Though Barta writes that
his method will be generalized in subsequent publications, I was not able to find any extensions
of his original work before an article of Duffin (1947) where a Schrödinger operator of the form
H = −� + V is considered. Duffin shows that the Dirichlet boundary conditions imposed on
the trial function ϕ can be relaxed but he loses the upper bound. One obtains the equalities
in (4) for a flat local energy, i.e. for ϕ = �0; hence we will try to work with a ϕ that mimics
the exact ground state best. Therefore, generalizing the Barta inequalities by increasing the
size of the functional space of ϕ can be irrelevant. One should instead keep working with a
restricted set of trial functions that respects some a priori known properties of �0, such as its
boundary conditions, its symmetries and its positivity2.

More precisely, we will explain in the last part of this paper that, once a ϕ that bounds
the local energy is found, it is expected that there is only a finite number of independent
directions in the functional space along which the bounds can be improved. In the following,
we will actually deal with a finite-dimensional submanifold of trial functions ϕλ where λ

stands for a small number of control parameters varying in a control space C. Accordingly,
the strategy is clear: for, say, obtaining an optimized lower bound we will try to find
supλ∈C(infq∈Q(Eloc(λ; q))) where Eloc(λ; q) stands for E

[ϕλ]
loc (q). As long as the extremal

values of q �→ Eloc(λ; q) can be followed smoothly with λ (in particular, the Morse points are
generically stable), the problem is reduced to local differential calculations in C × Q in the
neighbourhood of the critical points: adding to a trial function an infinitesimal perturbation that
is localized far away from the extremal point does not affect the energy bounds. One recovers
the global sensitivity of the eigenvalue problem because the critical points of the local energy
generically bifurcate for finite variations of λ (Poston and Stewart 1978, Demazure 2000)
and can jump to other distant points when a degeneracy occurs (Arnold 1984, chapter 10,
especially figure 50).

In mathematical physics literature, Barta’s inequalities are always considered within the
context of the billiards systems (Laplacian spectra on a Riemannian manifold), even in the most
recent papers (for instance (Bessa and Montenegro 2004)). As far as I could search, the most
advanced extension to other physical problems has been made (tentatively) by Barnsley (1978)

2 A technicality should be mentioned here: if one chooses the trial states |ϕ〉 such that for all q ∈ Q, 〈q|ϕ〉 > 0
except, perhaps, for the a priori known zeros of 〈q|�0〉, we can deal with systems where the configuration variable q
includes some discrete parameter such as a spin index (the somewhat loose notation HRϕ(q) must be understood as
the real part of 〈q|Ĥ |ϕ〉 and dq is the measure on Q possibly having a continuous and/or a discrete part). Indeed,
under the positivity hypothesis, from (1) we deduce that there must be a couple (q, q ′) in Q2 such that ϕ(q) > 0,
ϕ(q ′) > 0, (HR − E0)ϕ(q) � 0, (HR − E0)ϕ(q ′) � 0. Therefore inequalities (4) remain valid. For instance, if HR

is a (possibly finite) matrix, the local energy consists of a discrete (finite) set of real numbers.
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but, for the same reasons as Duffin’s (1947), he systematically loses the upper bound. Besides,
he acknowledges he is unable to produce any non-trivial bound for the helium atom.

One can easily understand Barnsley’s failure: with variational methods, a very rough
estimation of the exact ground state wavefunction can lead to a reasonably good agreement for
E0 while a simple local perturbation of the exact wavefunction can even make the local energy
unbounded. Therefore, at first sight, one could see the sensitivity of the local energy as a major
drawback of the method: variational methods are more robust to local perturbations of the
trial function. But this argument can be reversed: compared to the rigidity of the variational
methods, the differential method offers the possibility of improving the estimations at low cost
provided we are able to implement a skilled strategy (eliminating the singularities, controlling
the behaviour at infinity with JWKB techniques, increasing the absolute minima, etc). In the
following, I explicitly show in many non-trivial cases that once we have this strategy in mind,
we can obtain interesting results for complex systems. For instance, not only can we improve
Barnsley’s trivial bound for the ground state energy of the helium atom, but it will be shown in
section 4 how this result generalizes to any number of Coulombian particles. The calculations
can be made analytically with a surprising simplicity.

As far as the upper bound is concerned, the variational method leads a priori to a better
approximation than the differential method since, for any normalized function ϕ,∫

Q
ϕ∗(q)Hϕ(q) dq =

∫
Q

|ϕ(q)|2E[ϕ]
loc (q) dq � sup

Q

(
E

[ϕ]
loc (q)

)
. (6)

Nevertheless, being free of any integration, the absolute maximum of the local energy is a
quantity that is more easily accessible to analytical or numerical computations than the average
value of H.

3. Application to billiards; the example of the 2D-annular billiard

As a first illustration of the differential method, let us consider the problem of finding the
lowest eigenvalue of H = −�/2 in a connected finite region Q with the Dirichlet boundary
conditions imposed on B def= ∂Q. Suppose that the boundary B is given by an implicit smooth
scalar equation of the form b(q) = 0 while the interior of Q is defined to be the set of
points q such that b(q) < 0. Then, trial functions can be taken of the form ϕ = f b for any
arbitrary smooth function f that does not vanish inside Q. The only possible singular points of
q �→ E

[ϕ]
loc (q) are located on B and can be removed if f is chosen with appropriate behaviour in

the neighbourhood of B. Imposing this behaviour for f is a priori a simpler task than solving
the eigenvalue problem on the global Q: one dimension has been spared since we have to
deal with some local properties of f near B. For instance, by generalizing Barta’s trick (Barta
1937), one can easily check by simple equation counting that when Q is algebraic, i.e. when
b is a polynomial, provided that we choose f to be a polynomial of sufficiently high degree n
whose zeros are outside Q, we can find a polynomial g of degree n−2 such that �(f b) = gb.
Therefore, E[ϕ]

loc = −g/(2f ) is bounded and finite upper and lower bounds of E0 can be found.
Let us apply this method to the asymmetric annular billiard that is an elegant paradigmatic
model in quantum chaos (Bohigas et al 1993). B is made of two circles of radius 1 and r < 1
whose centres are distant by δ < 1 − r . Q is the 2D domain in between the circles. The
simplest choice of trial function is to take ϕ(x, y) = b(x, y) = [x2 +y2 −r2][(x−δ)2 +y2 −1].
One can check analytically that the lower bound of E

[ϕ]
loc is

inf
Q

(−�ϕ

2ϕ

)
= sup

Q

(
8[(x − δ/2)2 + y2 − (1 + r2)/4]

[x2 + y2 − r2][(x − δ)2 + y2 − 1]

)
. (7)
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For r = 3/4 and δ = 0.1, a simple numerical computation shows that (7) is finite and
obtained at (x, y) 	 (0.86, 0) and leads to E0 � 28.390 to be compared with the exact result
E0 	 42.94. As one could have expected with the rough trial function chosen above, the
estimation is not very precise but the calculations required here to get this result are much
simpler than the ones involved in a variational method (that provides the complementary upper
bound 55.32 with the same test function) or by the exact numerical resolution that requires
finding the smallest root of an infinite determinant made of Bessel functions.

4. The many-body Coulombian problem

The next examples, presented in this section and in the following, will illustrate that the first
strategy for obtaining finite bounds is to get rid of the singularities that may appear in the
local energy. When Q is not bounded, one must have a control over the behaviour
of the trial functions as q goes to infinity. For a multidimensional, nonseparable,
Schrödinger Hamiltonian, a JWKB-like asymptotic expression is generally not available
(Maslov and Fedoriuk 1981, introduction). Nevertheless, the differential method is less
demanding than the semiclassical approximations: we need the local energy to be bounded at
infinity but we will not require it to tend to the same limit in all directions. As already shown
in the annular billiard problem, for the sake of simplicity one could start with a less ambitious
program and try to obtain just one nontrivial inequality in (4).

The second example is to consider a system of N non-relativistic, spinless, charged
particles living in a D-dimensional infinite space. Their kinetic energy is given by∑

i=0,...,N−1 p̂2
i

/
(2mi) and they interact with each other via a two-body Coulombian interaction

eiej /r̂ij . We will assume that the masses mi and the charges ei allow the existence of
a bound state. Once the free motion of the centre of mass is discarded, we are led to a
D(N − 1)-dimensional configuration space that can be described by the relative positions
q = {r0,i}i=1,...,N−1 with respect to one distinguished particle. The Hamiltonian is given by

Ĥ =
N−1∑
i=1

1

2m0,i

p̂2
i +

1

2m0

N−1∑
i, j = 1
i 
= j

p̂i .p̂j +
1

2

N−1∑
i, j = 0
i 
= j

eiej

r̂i,j

. (8)

The notation mi,j stands for the reduced mass mimj/(mi +mj). For D � 2, one can eliminate
the Coulombian simple poles ri,j = ‖r0,i − r0,j‖ = 0 in the local energy by choosing the trial
function as follows:

ϕ(q) = exp


−1

2

N−1∑
i, j = 0
i 
= j

λi,j ri,j


 (9)

with λi,j = −2mi,j eiej /(D − 1). When this choice does not provide a normalizable function,
it should be understood that the exponent is just the first order of a Taylor expansion near
ri,j = 0. Whenever (9) is actually square integrable on Q, the local energy reads

E
[ϕ]
loc = −

N−1∑
i, j = 0
i < j

λ2
i,j

2mi,j

−
∑
ĵ,i,k

λi,j λi,k

mi

cos(ĵ, i, k). (10)

The last sum involves all the N(N − 1)(N − 2)/2 angles ĵ, i, k that can be formed with all the
triangles made of three distinct particles. This expression treats all the particles on an equal



1044 A Mouchet

0 1 2 3 4
–1

0

1

2

E

B
2.3

–1/2

r

B

α z

ρ

Figure 1. Upper and lower bounds of the ground state energy (thick line) for hydrogen in a Zeeman
configuration.

footing and it is clear that the local energy is bounded everywhere. For N = 2, we recover
the exact ground state since the last sum is absent and the local energy is constant. For a
helium-like atom (D = 3, N = 3) of charge (Z−2)e with the nucleus considered as infinitely
massive compared to the electron mass, only two angular terms survive and we get (in atomic
units) Eloc = −Z2 −1/4 +Z(cos θ1 + cos θ2)/2. The two angles are taken at the vertices made
by the two electrons: the sum of their cosines is bound from below by 0 and from above by 2
(diametrically opposed electrons). The lower bound of the local energy is −Z2 − 1/4; this is
not an interesting piece of information since we know that E0 is larger than the energy −Z2

obtained by neglecting the strictly positive repulsion of the electrons. On the other hand, the
bound E0 � −(Z − 1/2)2 provides a simple, analytical, nontrivial result.

5. The hydrogen atom in a magnetic field

The third application of the differential method to a non-integrable system will concern the
hydrogen atom in a constant and uniform magnetic field B�uz. While the positivity of the ground
state wavefunction was guaranteed by the so-called Krein–Rutman theorem in all the previous
examples (applicable for any Hamiltonian of the form (5), see for instance (Reed and Simon
1978, XIII.12)), it is no longer valid for an arbitrary potential when a magnetic field is present
(Helffer et al 1999). Nevertheless, for the hydrogen atom, the attractive interaction between
the nucleus and the electron keeps the orbital momentum Lz of the ground state at zero for
any arbitrary value of B (Avron et al 1977) and the Krein–Rutman theorem applies when
restricted to the Lz = 0 subspace. In order to preserve the symmetry of the ground state,
the trial function will be chosen to be strictly positive and even with respect to z; hence we
can work in the half space where z � 0. With a vanishing paramagnetic term, ϕ depends
on the coordinates q = (ρ, r) only (see figure 1). In atomic units, the local energy is given
by E

[ϕ]
loc = V − �ϕ/(2ϕ) where the effective potential is V (ρ, r) = B2ρ2/8 − 1/r . In

order to eliminate the Coulomb singularity, one must impose some local conditions on the
logarithmic derivatives of ϕ. More precisely, with S

def= ln ϕ, we must have ∂rS(0, 0) = −1
and ∂ρS(0, r) = 0 for all r � 0. Assuming that S is smooth enough near ρ = 0, it takes
the general form S(ρ, r) = −r + r2l(r) + ρ2h(ρ, r) where l and h are two smooth functions.
Choosing l ≡ 0 and h ≡ −B/4 (resp. h ≡ 0) will bound from above (resp. below) the local
energy: −1/2 � E0 � −1/2 + B/2. As in the previous example the lower bound is useless
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Eloc

q

Figure 2. Increasing E
[ϕ0]
loc (dashed line) with one local perturbation is limited. When adding to

ln(ϕ0), say, a Gaussian perturbation localized near an isolated minimum of the local energy, we
can increase the value of the absolute minimum by a finite amount (solid line in the left figure).
But if the magnitude of the Gaussian is increased too much, the minima created by passing through
a bifurcation can decrease below the original minimum (solid line in the right figure).

since it can be guessed from the very beginning. The real challenge here is to improve the
lower bound without introducing a divergence as r → ∞ in any direction characterized by α.
After a detailed examination of the possible balance between the asymptotic behaviour of l
and h as r → ∞, a trial function can be constructed in order to improve the trivial lower bound
for B large enough. Namely if we take S = −r − Bρ2/4 + ρ2

(
r −

√
r2 − ρ2

)
/(ρ2 + 5r/

√
B)

we improve the trivial lower bound for B � 2.3 (see figure 1). Note that for very large B we
recover a wavefunction that mimics a Landau state.

6. A local algorithm for improving the bounds; application to the quartic oscillator

Assume now that ϕ0 = exp(S0) bounds the local energy. Is there any systematic strategy
to improve the bounds and, one day, compete with the very high precision of the secular
variational and perturbative methods or numerical diagonalization of truncated matrices? Of
course one can always combine these four approaches but let us look, for the moment, how
the local character of the differential method can be exploited further. Suppose that q0 is a
point where q �→ E

[ϕ0]
loc (q) reaches its lowest non-degenerate value. Among all the possible

infinitesimal perturbations of S0, only those that are localized in the neighbourhood of q0 are
relevant since adding a perturbation far away from q0 will not affect the absolute minimum.
The appropriate framework for local studies in an infinite functional space is bifurcation theory.
Since the local energy, the determination of the critical points and their stability involve a finite
number of derivatives, we expect that the number of relevant control parameters λ remains
finite for low-dimension configuration space very much like the central result of catastrophe
theory (Poston and Stewart 1978, Demazure 2000). We will leave this quantitative study for
future investigations. For the moment, let us keep the discussion at a qualitative level only
with a 1D Hamiltonian of the form H = −�/2 + V and take S = S0 + δS with a Gaussian
perturbation δS(q) = s exp(−(q −a)2/σ 2) controlled by three parameters λ = (s, a, σ ). The
specific choice of the form of δS is not important here; only a finite number of pointwise
derivatives will matter for locally improving the bounds as long as δS does not change the
normalizability of the trial function. The choice of a Gaussian is particularly simple: it will
modify the local energy in a neighbourhood of a whose size is governed by σ and by the
magnitude s. This perturbation is qualitatively reproduced in figure 2. The value of Eloc at
q = a is increased (resp. decreased) for a small but finite positive (resp. negative) s. We can
apply this procedure near the absolute minimum (resp. maximum) of Eloc and repeat it for the
possible absolute extrema that may have emerged during the previous step. We get an iteration
sequence that may systematically improve the bounds. Still, this algorithm is slowed down
because if we try to ‘lift up the dress’ too much, a ‘prudish censor’ lowers it on both sides of
q = a (this phenomenon is not specific to 1D).

To be more precise, consider a quartic potential given by V (q) = r2q2(q2 +ηδ2)/2 where
η = ±1. In order to bound the local energy as |q| → ∞, we can use a JWKB-like expansion
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0

–3

–2

–1

locE (0)

locE (25)

locE (1)

locE (9)

–2.74

–3.27
q 10

Figure 3. Adding n Gaussians to S0 allows us to increase the minimum of the local energy when
constructing the sequence E

(n)
loc . For each iteration, only one scalar parameter is optimized (the

amplitude of the Gaussian being added).

for S0. If we want a uniformly smooth expression, we can take

S0(q) = − 1
3 r(q2 + δ2)3/2 + 1

2 rδ2(1 − η)(q2 + δ2)1/2 − 1
2 ln(q2 + δ2) − 1

2 rδ4(q2 + δ2)−1/2.

(11)

The last term is chosen to improve the trivial lower bound given by the minimum of V . For
the arbitrary choice r = 1/

√
2, η = −1 and δ2 = 8, figure 3 shows how the lower bound

can be improved from −3.27 up to −2.74 (the exact result is −2.66) when adding to S0

enough Gaussians that are equi-spaced by 0.5 with a fixed σ = 1. Only their magnitudes s
are numerically optimized here, one after another. One can see a second advantage of the
differential method when numerically implemented: not only is no integral required but also,
provided we keep under control the instabilities that are illustrated in figure 2, the optimization
algorithm concerns a small number of parameters at each step (just one in the example given
in figure 3) to be compared with the large number of parameters to be optimized at one go in
the final step of the variational method.

7. Conclusion

The differential method appears to be a new kind of general theoretical tool for obtaining
rigorous information on a ground state energy. Its local character makes it quite different from
the traditional ones (to put it succinctly, the variational, the perturbation and the numerical
diagonalization techniques). In this paper, I have given some qualitative and quantitative
arguments to show how simple and efficient it can be. However, I should insist that even in the
cases where the variational or perturbative techniques can be applied, the aim of the paper is
not to seek for performance: for the moment the differential method is too young to compete
by itself with the traditional methods. One short term possibility is to calculate the extrema of
the local energy constructed with the trial function given by the other methods. The idea of
locally modifying the local energy or any local function of the same type—for instance, those
currently used in Monte Carlo methods—may be fruitful as well (Caffarel 2004). Actually, in
order to convince the reader that the method is indeed applicable in a wide field of physics and
furnishes some reasonable results, I had to compare them with some more precise ones and
therefore I dealt with situations where the exact ground state energy was already known with
the help of other methods. The algorithm that is presented in section 6 is chosen to prove how
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the local sensitivity of the local energy can be exploited to systematically improve the bounds.
The feasibility is in itself not obvious and is worth demonstrating even in the simplest cases.
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